Helmholtz Operators and Symmetric Space Duality

نویسنده

  • Thomas Branson
چکیده

We consider the property of vanishing logarithmic term (VLT) for the fundamental solution of the shifted Laplace-d'Alembert operators + b (b a constant), on pseudo-Riemannian reductive symmetric spaces M. Our main result is that such an operator on the c-dual or Flensted-Jensen dual of M has the VLT property if and only if a corresponding operator on M does. For Lorentzian spaces, where the +b are hyperbolic, VLT is known to be equivalent to the strong Huygens principle. We use our results to construct a large supply of new (space, operator) pairs satisfying Huygens' principle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

محاسبات توماس- فرمی برای تعیین خواص بحرانی ماده هسته‌ای متقارن براساس رهیافت جرم مؤثر تعمیم‌یافته

Using mean-field and semi-classical approximation of Thomas-Fermi, within a statistical model, equation of state and critical properties of symmetric nuclear matter is studied.  In this model, two body and phenomenological interaction of Myers and Swiatecki is used in phase space. By performing  a functional variation of the total Helmholtz free energy of system with respect to the nucleonic di...

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

Tense Operators on m–Symmetric Algebras

Here we initiate an investigation of the equational classes of m– symmetric algebras endowed with two tense operators. These varieties is a generalization of tense algebras. Our main interest is the duality theory for these classes of algebras. In order to do this, we require Urquart’s duality for Ockham algebras and Goldblatt’s duality for bounded distributive lattice with operations. The dual...

متن کامل

Infinite-dimensional Lie Algebras, Representations, Hermitian Duality and the Operators of Stochastic Calculus

Abstract: We study densely defined unbounded operators acting between different Hilbert spaces. For these, we introduce a notion of symmetric (closable) pairs of operators. The purpose of our paper is to give applications to selected themes at the cross road of operator commutation relations and stochastic calculus. We study a family of representations of the canonical commutation relations (CC...

متن کامل

Absolutely 2-Summing Operators, 2 a Symmetric Sequence Space

Pietsch [5] introduced the concept of absolutely summing operators in Banach spaces and later in [6] extended this concept to absolutely p-summing operators. At the background of these concepts are the sequence spaces I p and their duality theory. The object of the present paper is to extend the above concept to abstract sequence spaces 2. The sequence spaces 2 involved are described in Section...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997